Rockfall detection from terrestrial LiDAR point clouds: A clustering approach using R
نویسندگان
چکیده
In this studywe analyzed a series of terrestrial LiDAR point clouds acquired over a cliff in Puigcercos (Catalonia, Spain). The objective was to detect and extract individual rockfall events that occurred during a time span of six months and to investigate their spatial distribution. To this end local and global cluster algorithms were applied. First we used the nearest neighbor clutter removal (NNCR) method in combination with the expectationmaximization (EM) algorithm to separate feature points from clutter; then a density based algorithm (DBSCAN) allowed us to isolate the single cluster featureswhich represented the rockfall events. Finally we estimated the Ripley’s K-function to analyze the global spatial pattern of the identified rockfalls. The computations for the cluster analyses were carried out using R free software for statistical computing and graphics. The local cluster analysis allowed a proper identification and characterization of more than 600 rockfalls. The global spatial pattern analysis showed that these rockfalls were clustered and provided the range of distances at which these events tend to be aggregated.
منابع مشابه
Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملA Comparison of Two New Methods of Outlier Detection for Mobile Terrestrial Lidar Data
Terrestrial LiDAR provides many disciplines with an effective and efficient means of producing realistic three-dimensional models of real work objects. With the advent of mobile terrestrial LiDAR, this ability has been expanded to include the rapid collection of three-dimensional models of large urban scenes. For all its usefulness, it does have drawbacks. One of the major problems faced by the...
متن کاملComprehensive Utilization of Temporal and Spatial Domain Outlier Detection Methods for Mobile Terrestrial LiDAR Data
Terrestrial LiDAR provides many disciplines with an effective and efficient means of producing realistic three-dimensional models of real world objects. With the advent of mobile terrestrial LiDAR, this ability has been expanded to include the rapid collection of three-dimensional models of large urban scenes. For all its usefulness, it does have drawbacks. One of the major problems faced by th...
متن کاملA novel method for locating the local terrestrial laser scans in a global aerial point cloud
In addition to the heterogeneity of aerial and terrestrial views, the small scale terrestrial point clouds are hardly comparable with large scale and overhead aerial point clouds. A hierarchical method is proposed for automatic locating of terrestrial scans in aerial point cloud. The proposed method begins with detecting the candidate positions for the deployment of the terrestrial laser scanne...
متن کاملLisco: A Continuous Approach in LiDAR Point-cloud Clustering
The light detection and ranging (LiDAR) technology allows to sense surrounding objects with fine-grained resolution in a large areas. Their data (aka point clouds), generated continuously at very high rates, can provide information to support automated functionality in cyberphysical systems. Clustering of point clouds is a key problem to extract this type of information. Methods for solving the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Spatial Information Science
دوره 8 شماره
صفحات -
تاریخ انتشار 2014